

 FAULT TOLERANCE FOR FIGHT THROUGH (FTFT)

FEBRUARY 2013

FINAL TECHNICAL REPORT

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

STINFO COPY

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

AFRL-RI-RS-TR-2013-039

 UNITED STATES AIR FORCE  ROME, NY 13441  AIR FORCE MATERIEL COMMAND

NOTICE AND SIGNATURE PAGE

Using Government drawings, specifications, or other data included in this document for any purpose
other than Government procurement does not in any way obligate the U.S. Government. The fact that
the Government formulated or supplied the drawings, specifications, or other data does not license the
holder or any other person or corporation; or convey any rights or permission to manufacture, use, or
sell any patented invention that may relate to them.

This report was cleared for public release by the 88th ABW, Wright-Patterson AFB Public Affairs Office
and is available to the general public, including foreign nationals. Copies may be obtained from the
Defense Technical Information Center (DTIC) (http://www.dtic.mil).

AFRL-RI-RS-TR-2013-039 HAS BEEN REVIEWED AND IS APPROVED FOR PUBLICATION IN
ACCORDANCE WITH ASSIGNED DISTRIBUTION STATEMENT.

FOR THE DIRECTOR:

 / S / / S /

JAMES PERRETTA WARREN H. DEBANY, JR.
Chief, Cyber Assurance Branch Technical Advisor, Information Exploitation
 & Operations Division
 Information Directorate

This report is published in the interest of scientific and technical information exchange, and its
publication does not constitute the Government’s approval or disapproval of its ideas or findings.

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection
of information, including suggestions for reducing this burden to Washington Headquarters Service, Directorate for Information Operations and Reports,
1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget,
Paperwork Reduction Project (0704-0188) Washington, DC 20503.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

FEBRUARY 2013
2. REPORT TYPE

FINAL TECHNICAL REPORT
3. DATES COVERED (From - To)

NOV 2009 – NOV 2012
4. TITLE AND SUBTITLE

Fault Tolerance for Fight Through (FTFT)

5a. CONTRACT NUMBER
IN-HOUSE

5b. GRANT NUMBER
N/A

5c. PROGRAM ELEMENT NUMBER
61102F

6. AUTHOR(S)

Kevin Kwiat

5d. PROJECT NUMBER
23G4

5e. TASK NUMBER
IH

5f. WORK UNIT NUMBER
01

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Air Force Research Laboratory/Information Directorate
Rome Research Site/RIGA
525 Brooks Road
Rome NY 13441-4505

8. PERFORMING ORGANIZATION
REPORT NUMBER

N/A

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
Air Force Research Laboratory/Information Directorate
Rome Research Site/RIGA
525 Brooks Road
Rome NY 13441-4505

10. SPONSOR/MONITOR'S ACRONYM(S)
N/A

11. SPONSORING/MONITORING
AGENCY REPORT NUMBER

AFRL-RI-RS-TR-2013-039
12. DISTRIBUTION AVAILABILITY STATEMENT
Approved for Public Release; Distribution Unlimited. PA# 88ABW-2013-0584
Date Cleared: 7 Feb 2013

13. SUPPLEMENTARY NOTES
14. ABSTRACT
When our cyber defenses’ ability to prevent, avoid, and detect an attack are outmaneuvered and our information systems
face impending loss of critical services, a fight-through capability must remain; otherwise restoration of those services
may come too late for us to emerge undefeated. The task of "protecting the protector" drives us to create a fight-through
capability that is hardened and heavily defended in cyberspace; however, these attributes alone are a "Maginot Line" that
begs the question of why cyber attacks succeed in the first place. The more realistic goal is to design a fight-through
capability that can absorb punishment and then rebound so that it can be the basis for restoration of critical services.
Adaptations of fault-tolerant computing concepts have been applied to address needs in cyber defense. We likened the
fight-through problem to an Observe, Orient, Decide, and Act (OODA) loop. Redundancy, as the underpinning of fault
tolerance, was strategically placed to counter an attacker’s optimal strategies. The fight-through OODA loop was aimed
to outperform the adversary’s OODA loop.
15. SUBJECT TERMS
Cyberspace, fault-tolerant networks, fight-through, network security, survivability, on-line social networks,
sensor networks, cognitive radio
16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF

ABSTRACT

UU

18. NUMBER
OF PAGES

50

19a. NAME OF RESPONSIBLE PERSON

KEVIN A. KWIAT
a. REPORT

U
b. ABSTRACT

U
c. THIS PAGE

U
19b. TELEPONE NUMBER (Include area code)

(315) 330-4574

 Standard Form 298 (Rev. 8-98)
 Prescribed by ANSI Std. Z39.18

i

TABLE OF CONTENTS

List of Figures ... i
List of Table ...iii
Acknowledgments... iii
1.0 Summary .. 1
2.0 Introduction .. 2
3.0 Methods, Assumptions, and Procedures .. 4

3.1 Replicated Computer in a Cluster Environment .. 5
3.2 Game Theoretic Formulation of Defensive Strategy Against Rational Attackers 7
3.3 Optimal Resource Allocation for Protecting System Availability 8
3.4 Continued Research in Voting Algorithms ... 9
3.5 A Brief Examination of Software Diversity: From Fault to Attack Tolerance10
3.6 Replication and Diversity: A Game Theoretic Approach ... 18
3.7 Trusted OSN (Online Social Network) Services ...24
3.8 Dynamic Reconfigurable Routing for Wireless Sensor Networks28
3.9 Bargaining for Radio Spectrum Sharing ..31
4.0 Results and Discussion ..35
5.0 Conclusions ..37
6.0 References ..39

ii

List of Figures

Figure 1: A Basic Observe, Orient, Decide and Act (OODA) Loop 1
Figure 2: Computer Clusters with Random Dictator and Random Troika 6
Figure 3: A Sample Scenario for Diverse Code Execution .. 15
Figure 4: Repeated Game Simulation with Five Nodes .. 22
Figure 5: Hierarchical Troika Nodal Arrangement ... 24
Figure 6: States of Data Sharing on OSNs.. 26
Figure 7: Dynamic Routing Framework ... 30
Figure 8: Pareto Optimal SPNE of the Respective Offerer in Different Periods.............. 34
Figure 9: Concentric OODA Loops: Attacker’s Outer Loop, Defender’s Inner Loop 37

List of Tables

Table 1: Cyber Game Classification .. 19
Table 2: Combination of Preamble Bits and Their Inferences .. 29

iii

Acknowledgements

This research was performed with support from the Air Force Office of Scientific Research
under the auspices of the Laboratory Research Independent Research (LRIR) Program.

Approved for Public Release; Distribution Unlimited.

1

1.0 Summary

When our cyber defenses’ ability to prevent, avoid, and detect an attack are outmaneuvered

and our information systems face impending loss of critical services, a fight-through

capability must remain; otherwise restoration of those services may come too late for us to

emerge undefeated. The task of "protecting the protector" drives us to create a fight-through

capability that is hardened and heavily defended in cyberspace; however, these attributes

alone are a "Maginot Line" that begs the question of why cyber attacks succeed in the first

place. The more realistic goal is to design a fight-through capability that can absorb

punishment and then rebound so that it can be the basis for restoration of critical services.

Adaptations of fault-tolerant computing concepts have been applied to address needs in cyber

defense.

Military strategist John Boyd conceived and developed the Observe, Orient, Decide, and Act

Loop (OODA Loop) [1]. He applied the OODA Loop to the combat operations process

including the engagement of fighter aircraft in aerial combat. Figure 1 shows a basic OODA

Loop.

Figure 1: A Basic Observe, Orient, Decide and Act (OODA) Loop

We likened the fight-through problem to an Observe, Orient, Decide, and Act (OODA) loop.

Redundancy, as the underpinning of fault tolerance, was strategically placed to counter an

Approved for Public Release; Distribution Unlimited.

2

attacker’s optimal strategies. The fight-through OODA loop was aimed to outperform the

adversary’s OODA loop.

Our goal was to discover and deliver new ways for adapting concepts from the field of fault-

tolerant design to create a cyber fight-through capability that absorbs punishment from

attacker-induced faults yet prevails. Spatial, temporal, and information redundancy are the

dimensions that, when stood-up concurrently, can withstand loss of resources in one

dimension while the other dimensions supply the reinforcing resources for a fight-through

capability. Fault tolerance for fight through (FTFT) spans multiple dimensions of

redundancy to form an OODA loop for fighting-through. By being able to observe an

attacker’s attempts to create faults in one dimension, FTFT can orient the other dimensions

and then decide on their deployment in order to act against the attack – by fighting through it.

2.0 Introduction

Fault tolerance in information technology and computing share several conceptual

similarities with cyber defense. For example, fault tolerance deals with detection and

treatment of failures and cyber defense deals with detection and treatment of violations. A

well-formed and well-founded framework for treating violations comes from fault-tolerant

computing. Traditionally, fault-tolerant computing dealt with randomly occurring faults and

not faults results from intelligent attack. However, a reliable system should be survivable

against the faults caused by cyber attacks as well as the internal failures. Whereas faults

caused by natural-occurring phenomena are tolerable using established, standard approaches,

attacker-induced faults require a more aggressive approach. New challenges arise in the area

of transforming fault tolerance to attack tolerance.

We have investigated others’ research into similar uses of fault tolerance. DARPA’s

Organically Assured and Survivable Information Systems (OASIS) program performed and

documented [2] research that aimed to develop “…ways to enable critical DoD computers to

operate through a cyber attack, degrade gracefully if necessary, and allow real-time

Approved for Public Release; Distribution Unlimited.

3

controlled trade-offs between system performance and system security through such

techniques as redundancy and diversity of operating systems.” This research has

applications in robust, self-forming networks required to successfully conduct network

centric warfare.

Based upon the results and insights from the OASIS program, DARPA launched the Self-

Regenerative Systems (SRS) Program [3]. The SRS program, like the OASIS program,

sought to adapt concepts from fault-tolerant computing to cyber security. One notable

objective of the SRS program was that it aimed to surpass the fault tolerance attribute of

graceful degradation set forth by the OASIS program. The SRS viewed graceful degradation

as a continual depletion of resources that would eventually lead to the defeat of information

systems; instead, the SRS program sought to have information fully-rebound from attacker-

induced faults. Furthermore, given experiential knowledge of the attack, the information

system could be immune to that attack in the future. This learning technology was coined

cognitive immunity. Encountering the same attack again would not adversely affect the

information system; instead, once they became capable of defeating the attack, self-

generative systems were aimed at exceeding previous levels of performance.

If fault tolerance is to be a trusted basis for a fight-though capability, then we must anticipate

that the fault tolerance mechanisms themselves will be subjected to unanticipated conditions

created by attackers. Anticipating the onset of the adverse effects of an attack is the subject

of research in estimating an information system’s mean time-to-compromise (MTTC) [4].

Related research into estimating the mean-time-to-breach (MTTB) [5] analyzes an attacker’s

behavior. Although the terms “breach” and “compromise” are similar, measuring MTTB

requires significant detail about the target system whereas MTTC is measured in a

comparative way using observable variables rather than a calculated indicator. The work in

estimating a MTTC is used by security architects and managers to intelligently compare

systems and determine where resources should be focused. Like MTTB, MTTC estimates

require variables that are difficult to exactly quantify such as attacker skill levels. MTTC and

MTTB are used to deploy resources. Some of these resources may be redundant, such as

redundant data for information recovery or redundant services for continuity of operations.

Approved for Public Release; Distribution Unlimited.

4

Redundancy plays a fundamental role in fault tolerance, since specific resources must be in

place to deal with a fault when it is encountered. Spatial, temporal, and information

redundancy are used to create fault-tolerant systems [6]. Spatial redundancy is the physical

replication of hardware and software components. Information redundancy is the addition of

redundant information or data. Temporal redundancy attempts to reduce spatial and

information redundancy at the expense of using additional time. Designers of fault-tolerant

systems must understand the types of redundancy techniques available and the methods that

can be used to evaluate the impact of the redundancy. Fault-tolerant system designs will

often combine redundancy types. For example, spatial and information redundancy are used

together in Redundant Area of Independent Disks (RAID). RAID provides survivable

storage where the data is striped across multiple disks (spatial redundancy) and parity bits

(information redundancy) are added.

3.0 Methods, Assumptions, and Procedures

The technology that we developed includes models, algorithms, and protocols to ensure that

redundancy for fault tolerance creates an OODA loop for fighting-through. An important

step in this direction is maintaining consistency among replicas. We therefore begin this

discussion of our methods, assumptions, and procedures by choosing a telling example to

illustrate the basis of our intended work. The example involves voting among replicated

computers. The process of replication in information systems forms a basis of system

survivability. Replication can overwhelm an attacker with too many targets, while also

ensuring that a sufficient number of components will survive the attack. When an attacker

breaches the defenses that surround certain system components and subsequently overtakes

those components, their replicas carry out the mission. The premise behind replication as a

defense mechanism then is that although the system’s internal resources have been

diminished, it survives. A mechanism, however, is merely a trigger; procedures are used in

conjunction with the mechanism to take the actions to fight through the attack. For these

procedures we use game theory.

Approved for Public Release; Distribution Unlimited.

5

Section 3.1 introduces the use of replicated computers for a fight through capability and sets

the stage for using game theory. Section 3.2 elaborates on the application of game theory in

formulating a defensive strategy for replicated computers. Section 3.3 extends the defensive

strategy to specifically preserve the availability of service provided by the replicas. Section

3.4 describes our recent advance in resolving the replicas’ redundant outputs, and this leads

to Section 3.5 where we consider the how the replicas’ concurrent tasks impact the use

software diversity. Building upon this foundation of combining replication with diversity,

Section 3.6 describes a game-theoretic approach for fighting through attacks. Section 3.7,

marks a departure from the predominate theme of fault tolerance. In Section 3.7 we examine

trust in on-line social networks. Section 3.8 describes a new approach for routing in wireless

sensor networks. An improved method for sharing of spectrum between cognitive radios is

given in Section 3.9.

3.1 Replicated Computers in a Cluster Environment

Consider a cluster of computers where voting is performed. Each of the computers is

redundant in the sense that they perform an identical task that is replicated among them all.

Some computers in the cluster may be fault-free while others may be faulty. The most-often

applied assumption is that a majority of the computers are non-faulty, so the voting decision

is formed by majority rule. What drastically modifies this assumption is that faults may be

attacker-induced.

At the onset of our research we dealt with two noteworthy attack-tolerant systems: random

dictator and random troika. Figure 2 shows 2 clusters of 9 computers each: one cluster

employs random dictator and the other random troika. Note that the majority of 9 is 5, so

majority voting among all the computers within a cluster would tolerate, at most, 4 failed

computers. Random dictator and random troika represent different voting schemes. In Figure

2, the random troika only considers majority voting among 3 of the 9 computers within a

cluster. Random dictator really performs no voting at all; instead, a computer selected at

random “dictates” that its result should represent all of the computers in its cluster.

Approved for Public Release; Distribution Unlimited.

6

Figure 2: Computer Clusters with Random Dictator and Random Troika

A published [7] FTFT result shows that the added fault tolerance of majority rule is

apparently trumped by the added attack tolerance of the random dictator. Although it is

counter intuitive to create a single point-of-failure, with random dictator, the whole purpose

of voting in the first place (to the extent that the random dictator system would even be

considered “voting,” in the everyday use of this word) is shifted away from its original one of

replacing individual judgments with presumably more reliable collective judgments. In

random dictator, the purpose of voting becomes that of creating a shell game hiding the

identity of the dictator from the enemy. In the more formal game-theoretic analysis of this

contest between defender and attacker, the Nash equilibrium solution concept suggests that

the attacker will continue to concentrate his forces so as to corrupt a bare majority of the

computers in as many clusters as possible, even if he suspects that the defender will use

random dictator, against which no attack strategy is more or less effective than any other.

The reason for this behavior is to deny the defender the use of the otherwise more attractive

majority rule system. One effect, then, is that by concentrating his forces, the attacker denies

the defender the benefit of fault tolerance lent by majority rule. Therefore, if our policy for

cyber defense were to adopt a purely random dictator approach, then we inadvertently give a

strategically-thinking attacker an edge by becoming highly vulnerable to naturally-occurring

faults.

To fight through, we could resort to something other than random dictator that combines a

Approved for Public Release; Distribution Unlimited.

7

degree of fault tolerance with some of the random dictator’s shell-game effect. It seems

possible that randomly selecting a small subset of voting computers (called a random troika -

see Figure 2 above) in the cluster would provide a better defense than both random dictator

and majority rule for some examples similar to the one we have been discussing. If the

attacker continued to corrupt a bare majority of the computers in as many clusters as

possible, then random troika would out-perform majority rule in the corrupted clusters, but in

these clusters it would not do as well as random dictator. In the unattacked clusters, random

troika would out-perform random dictator, and be out-performed by majority rule. But such

an analysis fails again to take account of strategic factors; if random troika were available as

a defense option, then the attacker’s optimal strategy might no longer be to corrupt a bare

majority of the computers in as many clusters as possible. Certainly, it then became

necessary to do a careful strategic analysis with random troika added as an available fault

tolerance-based defense strategy.

3.2 Game Theoretic Formulation of Defensive Strategy Against Rational Attackers

Motivated by the consideration of strategic factors posed by deploying the random troika, we

developed an optimal voting strategy (i.e., the optimal number of participating voters)

against rational attacks whose goal is cause total failure by strategically compromising

individual voters across the system. According to Myerson [8], “game theory can be defined

as the study of mathematical models of conflict and cooperation between intelligent rational

decision-makers”. Myerson’s notion of “rational decision-makers” takes on a malicious

connotation when applying game theory to cyber attacks and the highly unconventional

tactics such attackers can employ. Simply put, rational attackers are ones whose actions do

not deliberately diminish the chances to achieve the attackers’ goals. Armed with this notion,

we modeled [9] the problem of deciding the number of participating voters against rational

attackers as a two-person zero-sum game problem and provided solutions based on the

results of this well-known game problem. A set of experiments was performed to illustrate

the devised majority voting strategy when varying numbers of replicas are deployed and

undergo aggression from rational attacks. The aggregate replicas’ ability to maintain the

integrity of their majority output changes when the individual replicas’ reliability changes

Approved for Public Release; Distribution Unlimited.

8

and when the number of compromised replicas grows. We found the optimal number of

participating replicas participating in a majority vote when the system undergoes rational

attacks, and we provide the solution for deciding the optimal number of voters that

maximizes the expected number of clusters that will produce a correct result while the system

is under attack. Three sets of experiments were performed investigating the relationship

between the voting strategy, the attacker’s strategy, and the ability of the system’s fault

tolerance to fight through the attack and preserve overall system integrity.

3.3 Optimal Resource Allocation for Protecting System Availability

Whereas our work in [9] dealt primarily with spatial redundancy (i.e., replicated computers in

a cluster environment), the use of multiple dimensions of redundancy – spatial, temporal, and

information – became more apparent in our work [10] that focused on maintaining

availability of the system’s core services’ in an adversarial environment. In our modeling of

this problem, the defender seeks to maintain maximum system availability for a given period

of time and does so by distributing defensive resources to attain the following: enhancing an

individual replica’s protection mechanisms; creation of additional replicas to overcome the

attacker with too many targets; and producing camouflaged components that appear like

functioning replicas but are merely decoys. With this environment, we see that redundancy

for fault tolerance is used for fighting through. The spatial redundancy of replicas is

accompanied by the information redundancy of the extra message traffic generated due to the

camouflaged replicas. In a separate paper [11], we demonstrated how this form of

redundancy burdens attackers who are attempting to probe the system by enmeshing them in

an indiscernible pattern of message traffic that often misleads them from their intended target

- thus lengthening the mean-time-to-breach a replica. Temporal redundancy is embodied in

[10] by the repetitiveness of the camouflaged replicas where their seemingly meaningful

efforts merely mimic the action’s of the true replicas but at another time. These instances of

information and time redundancy support our assumption that the attacker has no a priori

knowledge about the system configuration; instead, the attacker has to gain this knowledge.

The assumed inability to distinguish between fake and true replicas or to distinguish between

replicas having enhanced protection and those without means that, at the onset, the attacker

Approved for Public Release; Distribution Unlimited.

9

resorts to random attacks on these replicas that are perceived to provide the system’s core

services. We formulated this attacker-defender problem as a defender’s optimization problem

and presented an algorithm that optimally allocates the above system resources to maximize

the system’s availability. Our analysis of the attacker-defender problem in which the

defender’s resources are limited and must be distributed between the three different

approaches to protect system, (i.e., adding redundant, or camouflage replicas, or installing

enhanced security scheme on existing replicas) led to our devising an algorithm that

optimally allocates this triad of resource types so as to maximize the system’s availability.

Three sets of experiments were performed to investigate the relationship between: the triad

of resource types and system availability; attack time and different resource allocation

strategies; and resource allocation strategies and the number of replicas providing core

services. In this work, however, we did not consider the cost the attacker anticipates accruing

when promulgating the attack to different replicas in the next step of the game. If such costs

are taken into consideration, the optimal solution may be viewed from two different

perspectives: first, the attacker’s will consider how frequently to switch to another targeted

replica while striving to maximizing the system damage inflicted; second, the defender will

analyze the attacker’s strategy first and then take those countermeasures deemed necessary to

minimize the system damage. In the future, we plan to apply game theory to this

strategically-rich scenario; however, in Section 3.6 we apply game theory to form a replica’s

reputation and use this reputation to assist in fighting through an attack.

3.4 Continued Research in Voting Algorithms

Prior to the FTFT effort, we had conducted research into voting algorithms; yet, as voting is

oftentimes inseparable from the deployment of replicated computing resources to fight-

through cyber attacks, we carried out additional research in the area. Our work in FTFT

employed hierarchical adaption methods to manage the Quality-of-Service (QoS) at various

levels of a replica voting system: namely, the timely delivery of correct data to the end-user.

The fine-grained adaptations occurring in the voting system are controlled macroscopically

via the QoS reconfiguration actions occurring at the application layer, in a context of the

external events sensed by a situational assessment module. Whereas our past work had

Approved for Public Release; Distribution Unlimited.

10

focused on engineering the voting protocol mechanisms to lower the time-to-complete (TTC)

a voting round and the bandwidth consumed therein, our current work [12] considered the

dynamic nature of the network bandwidth availability to support the voting operations and

the unpredictable changes in device-level fault occurrence and network message loss and

delay. We treat the voting system as a “black box” with known I/O behaviors, which is then

exercised by the situational assessment module for macroscopic control. Our hierarchical

adaptation approach offers the potential to keep the data miss rate of the voting system within

the allowed limits as the system and environment parameters change.

3.5 A Brief Examination of Software Diversity: From Fault to Attack Tolerance

High assurance of computing and information systems is challenged by the very entity that

makes such systems possible – software. This is because software is especially susceptible to

unanticipated faults. The Apollo guidance computer offers a historical example.

Technologists claim that the goal to put a man on the moon propelled the advancement of

integrated circuits (ICs) from what were nascent prototypes to proven chips having full-scale

manufacturability [13]. The capability for sustained production of reliable ICs launched the

3rd generation of digital computers. However, in contrast to being credited with helping

reach this milestone of hardware development, the U.S. Air Force noted that the Apollo lunar

missions, in spite of being one of the most carefully planned and executed software projects

ever taken, attributed nearly all their major problems to software design faults [14]. The

design successes of the Apollo space borne computer reside predominantly in hardware.

Since then, the overwhelming concern for design faults had thus not been directed towards

hardware; instead, design faults consistently became a major concern in software [15].

Indeed, the major portion of a system’s complexity is to be found in the software, and design

faults naturally stem from complexity.

Software faults are design faults – introduced when the software is created. They can occur

throughout the design process including programming. If they escape detection during the

testing and debug stages, then these faults remain within the fielded software. Recognizing

the potential significance of such faults, techniques to tolerate them have been proposed for

Approved for Public Release; Distribution Unlimited.

11

high assurance systems. Fault tolerance is almost always enabled through the use of

redundancy; yet, unlike physical faults, software faults occur only at design time, so the

ability to tolerate them was sought through redundant – albeit different - designs. In the

1970’s, two main techniques for tolerating software faults emerged. They are the Recovery

Block (RB) scheme [16] and N Version Programming (NVP) [17]. In general, these schemes

employ multiple variants of the software in an attempt to guarantee that at least one variant

will pass the correctness checks that are performed while the software executes. The checks

include voting on results that may not exactly agree, but are nonetheless correct, and

determining the reasonableness of a variant’s results. One study [18] advocated RB and

NVP for creating a combined hardware-software fault-tolerant architecture because the

checks these schemes employed were deemed sufficient to detect hardware faults as well.

However, the establishment of quantified estimates of the improvement in system reliability

that could be expected from using RB or NVP never fully materialized [15]. Without

measurable benefits to be derived from the creation of multiple software variants, software

fault tolerance did not become widely accepted; instead, it has been limited to extreme cases

such as the NASA Space Shuttle’s redundant computers. During the Shuttle’s flight-critical

phases, one computer ran independently-designed software apart from the other computers’

lock-step execution of identically-replicated software. This alleviated NASA’s fears of a

generic bug causing simultaneous failure of the redundant computers all running identical

software [19]. The perceived, but nevertheless unquantified, gain in assurance justified the

creation of diverse software.

Let us turn, for the moment, to more contemporary concerns and how software diversity has

come to the forefront. Concerns over the absence of software diversity in modern computing

and information systems spurred a study by Birman and Scheinder [20]. Being in a software

monoculture, these systems can be perceived as being susceptible to a common flaw. The

flaws, however, are not design faults that, when encountered by a running program, would

cause the program to fail; instead the targeted flaws are those that create vulnerabilities in the

software that are exploitable to attack. In such an environment, an attack that successfully

exploits a single global vulnerability could compromise all machines of the monoculture.

Addressing this vexing problem, Birman and Scheinder defined 3 types of attacks that could

Approved for Public Release; Distribution Unlimited.

12

be directed at a monoculture, and for each type, they outlined the corresponding defense [20]:

• Configuration: Exploit aspects of the configuration. Vulnerability introduced by system

administrator or user who installs software on the target. Useful Defense: Monoculture

such as Standard Desktop Computer

• Trust: Exploit assumptions made about the trustworthiness of a client or server.

Vulnerability introduced by system or network architect. Useful Defense: Principles of

least privilege and/or formal methods

• Technology: Exploit programming or design errors in software running on the target.

Vulnerability introduced by software builder. Useful Defense: Diversity

Flaws are at the underpinnings of all these attacks. For example, when systems are

misconfigured, confidentially of the system could be compromised by a configuration attack

that successfully skirts the system’s encryption. A trust attack could result from a flawed

assumption – one not rigorously substantiated. For example, a server considered as

furnishing trusted information may actually have good information supplanted with bad -

thus leading to a violation of information integrity. Apart from unintentional software flaws

manifesting as software faults that could cause a program to fail, fault-free code becomes

detrimental to a program – or flawed - when it enables attack. Specifically, the technology, in

what could very well be a fully-functional program, is maliciously manipulated by the

attacker so that the program goes into behavior that is unintended from its design.

Misconfigurations are adverse to a monoculture because a monoculture’s components

operate in a uniform manner, and when actions are done frequently and repeatedly, they

become less prone to error. Enforcing the principles of less privilege and applying formal

methods avoids bona fide behaviors that are oblivious to the pitfalls of misplaced trust.

Stemming from diversity of software is a multiplicity of underlying avenues for the attacker

to attempt malicious manipulation; yet the multiplicity forms a defense. Instead of offering

Approved for Public Release; Distribution Unlimited.

13

the attacker a richness of targets, the attacker now has to contend with temporal and spatial

barriers: the attacker needs enough time to successfully attack a sufficient number of distinct

software targets.

High assurance of computing and information systems – especially those on enterprise scale

that would entail the embracing of a monoculture – calls upon software diversity. We have

seen that software diversity for high assurance has spanned over half a century of computer

history. During that time, software diversity did not always garner high acclaim. In spite of

its longevity, a period even existed when software diversity was viewed as a detriment to

high assurance. In 1990, Abbott argued that software fault tolerance techniques, as

represented by the RB and NVP techniques, are departures from sound software engineering

practices [21]. In addition to the high expense for RB’s and NVP’s multiple software

variants, Abbott took exception to the notion that software fault tolerance’s capturing of

software design faults in the field is somehow better than devoting sufficient engineering

resources to detecting the same faults during normal program testing. He further noted that

in order for either RB or NVP to tolerate software design faults, a variant of the software that

handles each of the incorrect but tolerated cases must be designed and implemented ahead of

time. The acceptability of releasing potentially faulty variants alongside those that are

supposedly fault-free served as empirical evidence that a thorough design-and-test

methodology had been prematurely and deliberately abandoned. Whatever design faults

remained were to be handled, by RB or NVP, in the field. Abbott wryly referred to this

situation as “delayed debugging “.

Adding to the perceived futility of RB or NVP, Abbot noted their complete dependence on

the traditional design cycle to provide the code for a variant to do the correct processing. He

proclaimed [21], “It certainly is not the case that when a fault appears the system

dynamically generates new corrected code!” This highly dismissive stance, although soundly

argued, is now viewed more promisingly when the system being considered is confronted

with attacks. Software diversity that is not merely statically created at design time but is

dynamically generated by the system strengthens the system’s defense.

Approved for Public Release; Distribution Unlimited.

14

In 2000, DARPA assessed the existing approaches to information system security and

survivability – tenants of high assurance - as consisting of preventing, detecting and

containing unintentional errors and attacks. These systems, by employing static means for

high assurance, largely mimicked principles from fault-tolerant computing. The realization

that such systems were too vulnerable to attacker-induced faults gave DARPA the impetus to

initiate the Organically Assured and Survivable Information System (OASIS) program [2] in

partnership with the Air Force Research Laboratory’s (AFRL’s) Information Directorate. The

OASIS program was a cross-disciplinary program that combined fault tolerance and

Information Assurance (IA) technologies to build information systems that detect, contain

and operate through attacks in the then emerging cyberspace. Following the OASIS

program’s successes, a challenge of operating through attacks emerged: resource depletion.

Regardless of how well systems are protected or how well they tolerate errors and attacks;

they will eventually fail over time unless they have the ability to replenish lost resources. On

the positive side, OASIS-type systems that tolerate attacks by gracefully degrading services

afford time for these systems to regenerate. In 2004, DARPA began funding work in Self-

Regenerative Systems aimed at replenishing themselves of lost due to unforeseen errors or

attacks and automatically improving their ability to deliver critical services. The sought-after

product would make information systems and data persistent. Such information systems

must have redundancy and the ability to regenerate required functionality with increased

error and attack immunity, whereby corrupted components can be regenerated without

negatively affecting the whole system. FTFT intended provide a complementary effort that

was to expand replication from being merely large-scale deployments aimed at foiling an

attacker with too many targets. By introducing dynamic diversity in runtime environments,

FTFT sought to invoke a machine’s ability to automatically recover from attacks –

demonstrating the passage from fault to attack tolerance.

The complexity of regeneration warrants an illustrative, albeit simplified, example for

survivable voting execution with software diversity. Figure 3 shows 3 host computers, A, B,

and C, each executing diverse, but functionally-equivalent versions of code. The code is

logically divided into stripes such that when a stripe boundary is encountered, A, B and C

produce output, in the form of votes, to a poller P. Assume that the host’s vote represents the

Approved for Public Release; Distribution Unlimited.

15

state of that host. Since the code of each of the stripes is diverse, the votes must be allowably

different yet still be correct; therefore, the poller must be able to perform inexact

comparisons between the votes to determine if there is a disagreement among them. Figure 3

shows that host C, being a victim of an outside attack, casts a disagreeing vote. The poller in

this case is able to create a majority vote that represents the uncompromised computers A

and B. If the code in all of the 3 computers were completely identical, then regeneration

would be straightforward, but by introducing diversity, any necessary of translation of data

and state that underlies the regeneration is assumed to be performed by the poller.

P

P

Tim
e

Completion of
Stripe 0

Execution

Restoration of
State and

Stripe 1 Setup

Completion of Last
Stripe

Execution

A

State

B

State

C

State

A

State

B

State

C

State

A

State

B

State

C

State

Compromised

host
A’s vote

B’s vote
C’s vote

Majority result

Restored state

Final result

Outside
Attacker

Prior to Stripe
Execution

Figure 3: A Sample Scenario for Diverse Code Execution

This is a simple example of corrupted components – the state of the code in this case - being

regenerated. However, the stripe executions in Figure 3 shows that the regeneration does not

endure; instead, host C promulgates the attack by corrupting its state as illustrated in the last

stage of Figure 3. Although no harm is ultimately done because of the poller’s ability to mask

host C’s votes, the incompleteness of the regeneration puts this system on the brink of losing

Approved for Public Release; Distribution Unlimited.

16

its assurance. If either machine A or B were to also become compromised, then the final

result produced in Figure 3 is corruptible. From this perilous position, A and B must unify

before another compromise precludes any possibility of further regeneration. A complete

regeneration would eliminate host C and replace it. In realizing a rebounding from the attack

with a replenishment of the previously-lost computer C, A and B must act in unity –

agreeing, say, on the admission of a new member to the triumvirate. Such an agreement,

even in the simple collection of computers of Figure 3, involves performing the act of

consensus. Seeking high assurance of regeneration incited an investigation into combining

software diversity with consensus protocols to form an attack-tolerant system.

Instantiations of software diversity have been demonstrated through the automatic generation

of code from a formal verification system [22]. In [22], formal verification in the

combination of software diversity with consensus protocols underscores high assurance in

making the passage from fault to attack tolerance. Abbott’s skepticism of software diversity

dismissed the idea that when a fault appears the system does not dynamically generate new

corrected code. For attack tolerance, such faults would be considered as attacker induced; yet

software faults in the classical sense are not to be ignored. Currently in [22], the regenerated

code that is diversified to thwart sustained technology attacks is formally verified. Unlike

being characterized as “delayed debugging” the diversity in [22] is grounded in rigor. This

avoids the common pitfall encountered when introducing new technology into a high

assurance setting: susceptibility to faults is not inadvertently increased.

High assurance is also a compelling reason to avoid “delayed detection” of attacks. If

evidence of attack is to be found in a computer’s state, then it compels us, in the context of

Figure 3, to frequently compare the computers’ states to detect such evidence. Consensus

and voting are inextricably bound: for participants to reach agreement they need to vote

among themselves. The onerousness of “delayed debugging” stems from, according to

Abbott, the undue burden it places upon fielded systems. He asserts that transferring the

need to find and remedy faults from the design phase to when the system is in operation is

not an efficient use of resources; instead, resources, such as time, could be allocated much

more propitiously.

Approved for Public Release; Distribution Unlimited.

17

 Performing comparisons, as in Figure 3, requires time. The act of comparison is a common

ingredient to both consensus and voting, so it is readily available as a means to detect attacks

during these operations. A tendency to “delay detection” could spell defeat because it may

allow the attacker sufficient time, before a state comparison is made, to successfully attack a

majority of the computers. Recalling the diverse code execution depicted in Figure 3, the

actions of the poller are similar to those of a voter: the redundant outputs are compared in

majority-voting fashion in order to mask the erroneous outputs of a minority. However, we

used the term “poller” in Figure 3 instead of the term “voter” because a poller actively

solicits outputs from the computers whereas a voter’s normal operation is to passively wait

for the computers to provide their outputs as the voter’s input. A voter would only receive an

input when the computers’ programs are generating output – and this may be infrequent. The

action of a poller, unlike that of a voter, is to frequently seek erroneous computer outputs as

an indication of a successful attack corrupting a computer’s state. The polling of the

computers in Figure 3 is through the actions of the code stripes. In this situation, an attacker

alters a computer’s signature of a state (herein referred to as merely “state”) when

compromising the computer. The state could, for example, be chosen from a combination of

some selected values of the diverse code and from indicators from each of the individual

redundant computers’ defenses. Instead of voting when the computers have outputs ready,

the polling on a stripe boundary forces the computers to provide their intermediary results for

comparison. Striping in this manner protects a computer by imposing a bound, S, on the

stripe size. Since each computer’s state is refreshed between stripe executions, no minority’s

state is preserved from one stripe to the next. Thus, a successful attack must be placed within

a single stripe. This places an upper bound on the time of a successful attack of S machine

instructions. Therefore, a stripe of size S will successfully thwart all attacks having the same

temporal duration. Consequently, as S is decreased, the level of protection is increased. An

immediate drawback to decreasing S is the increase in polling and the subsequent overhead

of majority state regeneration. A subtle drawback is to diversity itself: striping, we contend,

opposes diversity because of decreasing S. If voting is performed only when the computers

have outputs ready, then the output specification for the diverse, but functionally-equivalent

versions of the code would allow for comparison of the computers’ outputs. Even if the

Approved for Public Release; Distribution Unlimited.

18

outputs are different but still conform to the output specification (due to allowable fuzziness

in the output specification), then a form of inexact voting would permit these different-but-

still-correct outputs to not be inadvertently flagged as erroneous. When the size of S is not

aligned with the times that the code’s output is created, then comparison of the output from

the diverse, but functionally-equivalent versions of code must be purely on the internal state

of the computers running the code. This need to specify the states so as to make them

comparable is a hindrance to diversity because it forces a convergence towards a code

monoculture among the computers. As S decreases so must the diversity of the versions of

code. In the lower limit, when S = 1 the comparison is reduced to single - and thereby

identical - instructions. In this case, striving for high assurance has ushered in a monoculture.

The notion that code diversity is limited in scenarios where replicated computers operate

concurrently to fight through cyber attacks compels us to be mindful that code diversity will

not be abundantly available. Therefore, in the next section dealing with game theory in the

context of replication and diversity, we have taken a conservative approach to the degree of

diversity that we assume is available for replicated computers.

3.6 Replication and Diversity: A Game Theoretic Approach

Game theory is the branch of applied mathematics that analyses conflict and cooperation

among rational agents in strategic interactions. A strategic interaction is any interaction in

which the behavior of one agent affects the outcome of others. Cyber defense comprises

numerous strategic interactions. First, the attacker’s behavior must affect the defensive

strategy. Second, several protocols and security policies cannot be unilaterally implemented

because they require the collaboration of several users or several organizations to be

successful. Finally, cyberspace is interconnected and the data collected from one vulnerable

computer (organization) can be used to compromise the others. In fact, using the framework

of game theory, the network defender optimizes his resources and defensive strategy while

taking into account the users’ behaviors, other organizations, and the different attackers’

actions. We created Table I to summarize the different classifications of cyber games.

Approved for Public Release; Distribution Unlimited.

19

Table I: Cyber Game Classification

Questions Ans-
wers

Types of Game Remarks

Are the rules of the game already in
places?

Yes Game theory model

No Mechanism design
principle

Are the players rational? Yes Game theory model

No Evolutionary game
model

Population of players,
replicator dynamic
evolutionary stable strategy

Can the contract or agreement between
the players be enforced?

Yes Cooperative game Solution concepts: Core,
Kernel, Nucleolus, Shapley
value

No Non-cooperative game Solution concepts: Nash
equilibrium

Does the payoff depend only on the
strategy and not the identity of players?

Yes Symmetric game

No Asymmetric game

Does a player can benefit only at the
equal expense of others?

Yes Zero-sum game Frequent in military
application, pure conflict

No Non zero-sum game Frequent in civilian
application, opportunity of
cooperation for mutual
benefit

Is all players moving simultaneously or
are later players not aware of earlier
player move?

Yes Simultaneous game

No Sequential game

Is all players knows the moves previously
made by all other players?

Yes Perfect information Only sequential game can
be of perfect information

No Imperfect information

Is every player knows the strategies and
payoffs available to the other players?

Yes Complete information

No Incomplete information

Does the game have finite number of
players, moves, events, outcomes?

Yes Discrete game

No Continuous game Differential game

Is the game static or one-shot? Yes Static game

No Dynamic game (see A)

(A) Is the same stage game repeated? Yes Repeated game (see B)

No Stochastic game

(B) Does the players have perfect
observability of others’ past action

Yes Perfect monitoring game

No Imperfect monitoring
game (see C)

(C) Is the signal of past plays, however
imprecise and noisy, invariably observed
by all players?

Yes Imperfect public
monitoring

Players’ signal perfectly
correlated

No Imperfect private
monitoring (see D)

Players’ observe different
signal of past plays. In the
extreme case, players’
signals are conditionally
independent

(D) Do players, in their selfish
optimization, need to infer the private
history of other players based on their
own imperfect observation?

Yes Belief based equilibrium

No Belief-free equilibrium Easily tractable

Approved for Public Release; Distribution Unlimited.

20

We contend that game theory is a mature theoretical framework that enables the modeling of

several realistic scenarios.

The research in [23] examines cyber defense – particularly those technologies that target

cyberspace survivability. An effective defense-in-depth avoids a large percentage of threats

and defeats those threats that turn into attacks. When an attack evades detection, is not

defeated, and disrupts systems and networks, the defensive priority turns to survival and

mission assurance. In this context, mission assurance seeks to ensure that critical mission

essential functions (MEFs) survive and fight through the attacks against the underlying cyber

infrastructure. Survivability represents the quantified ability of a system, subsystem,

equipment, process, or procedure to function continually during and after a disturbance. US

Air Force systems carry varying survivability requirements depending on the MEFs’

criticality and protection conditions. Almost invariably, however, replication of a subsystem,

equipment, process, or procedure is necessary to meet a system’s survivability requirements.

Therefore, the degree of replication within a system can be paramount for MEF’s survival. In

fact, particular subsystem may fail, but the overall system survives because the functions

performed by the failed component are replicated. We cautiously prescribe diversity to the

replicas. They are assumed to be functionally-equivalent; yet their ability to generate

comparable outputs does not inadvertently drive towards a monoculture. We assume that

such diversity would stem from a randomization of some implementation aspects instead of

having been based on systems that are differently designed. For example, the randomizing of

system call names would be more conducive to attaining functionally-equivalent replicas

rather than the diversity achieved through having each of the replicas’ code designed by

independent teams.

Among FTFT’s research contributions, we developed a scheme that tracks a replica’s history

leading to the building of that replica’s reputation – a measure of how much a defender can

believe in that replica’s genuineness. This approach uses a mechanism based on a repeated

game. Specifically, a three-part mechanism - totally controlled by the defender - ensures high

decision reliability through voting.

The first part of the game-theoretic mechanism (in the context of a replica voting

Approved for Public Release; Distribution Unlimited.

21

mechanism) is an exponentially weighted moving average to accurately update the node

reputation according to the most recent behavior. Specifically, a node i reputation () at

times t is updated according to the following recursive formula.

{

 ()

 () () () correctly
 () () () correctly

()

γ is the smoothing factor, .

The second part is a mathematically proven optimum weight derived from the node’s
reputation (). Clearly,

 ()

 ()
 ()

The vote weight in (2) takes advantage of misleading information from malicious nodes. For

instance, if the defender knows that a specific malicious node lies all the time (e.g. the node

has zero reputation, negative infinite weight). The information from that node should be

inverted and used to get the true state all the time (100% sure). Equation (2) generalizes this

concept when aggregating the vote from several nodes. Clearly, a node having a negative

weight (or a reputation less than 0.5) has its binary vote flipped before computing the final

result. Nodes with positive weight have their vote unchanged. A node with zero weight has

its vote practically eliminated if at least one other node has a weight different to zero.

 The third part is a game separation method that discourages malicious nodes to accumulate

any reputation or have any weight in the decision process. When the discount factor δ is

large (), the malicious nodes are tempted to accumulate a reputation for a

potential future damage. To prevent this, the defender must divide the game using the

framework originally proposed by Ellison [24]. With this framework, the defender divides

the game in M separate games and record separate reputations for each game. The first game

taking place in period 1, M+1, 2M+1,3M+1…. The second in period 2, M+2, 2M+2,…, and

so on. Since the games are separate, the outcome of one game does not influence the outcome

of the other game; a malicious node’s best response must be independent across the different

games. As a result, the new discount factor in each of the separate game becomes , which

Approved for Public Release; Distribution Unlimited.

22

monotonically decreases as M increases. Therefore, there exists such that for all

 . The defender may choose M to be the least greatest integer such that M is

greater than up to the time the last regular node is compromised. The more intuitive way

to understand the mechanism we just described is that it will take a longer time for a

malicious node to accumulate reputation in each separate game. Say, for instance, that the

nodes vote once a day and possibly accumulate a reputation. If the defender divides the game

into 365 parts of day-long duration, then a malicious node that accumulates any reputation

today must wait a year before creating any damage. Therefore, after game separation, it

becomes optimal for all compromised nodes to cast bad votes (play N) and not accumulate

any reputation at all. As a consequence, because regular nodes have a higher weight in the

aggregate decision, the aggregate vote reliability stays above 50% even though nearly all the

nodes are compromised (see Figure 4).

Figure 4: Repeated Game Simulation with Five Nodes

Approved for Public Release; Distribution Unlimited.

23

 We can see in this simulation that, from time 60 to 93, the aggregate decision remains correct

although 4 out of 5 nodes are compromised. The aggregate decision actually survives until

the last node is compromised. Thus, the mission survival time is substantially improved

because the attacker is denied the “multiplier effect” of fault tolerance lent by majority rule.

This substantiates a fight-through OODA loop, enabled by multi-dimensional redundancy,

that completes before that attacker can complete his OODA loop. The result: the attacker

sees that the outcome of his successful attack is not a precipitous loss of the defender’s

resources once a majority is compromised; instead there is a dogged sustaining of targets.

The increase in the perceived effort to sustain the attack thus serves to overwhelm the

attacker. The defender having been afforded sufficient surviving resources has fought

through the attack.

Replicas support mission survival; yet to the mission, the replicas should run transparently.

A replicated process, for example, will produce replicated outputs that have to be resolved to

a single output. Voting among the replicas resolves the multiple outputs and can prevent

some malicious replicas from corrupting the outcome. Replication coupled with voting can

therefore be a pervasive element of survival. The research in [25], [26] has compared two

voting configurations: hierarchical voting (Figure 5) and simple majority.

Approved for Public Release; Distribution Unlimited.

24

Figure 5: Hierarchical Troika Nodal Arrangement

Hierarchical voting is appealing because its similarity to “divide-and-conquer” expedites the

voting outcome and admits voting on a larger scale. This research affirmed that a simple

majority configuration, in spite of the speed and scalability of a hierarchical one, is superior

in terms of withstanding attacks from compromised replicas within the voting configuration.

This result is timely because it synergizes with recent rethinking [27] of how warfighting

information should flow. Information has predominately been collected and pushed down

through subordinates and eventually to the lowest level. Now this information pyramid is

being inverted: the lowest, most populated level is being “elevated” so that it is the focus for

making game-changing decisions. Technology developments are growing, and the future

networked battlefield may see the lowest unit equipped for improving both the receipt and

collection of tactical data. Shifting replica-based survivability to accommodate this change

means enabling a versatile mix of configurations to fit the warfighter’s need.

3.7 Trusted OSN (Online Social Network) Services

With the growing number of Internet users, Online Social Networks (OSNs) have become an

important mode of communications, establishing a connection between people and providing

a platform for online interaction. OSN sites have evolved as the highest growing medium

Regular nodes

Malicious nodes

Logical connection

Correct vote

Incorrect vote

Approved for Public Release; Distribution Unlimited.

25

with expanded influence, involving various online activities on one platform for the people

who are willing to communicate and share their resources with others. Technically, those

OSN sites have integrated the functions of existing online services under one shelter, thus

providing a more interesting and productive platform to the users.

An OSN service can provide numerous advantages to users and organizations by helping

people to interact with each other and share their resources instantly, but it also introduces

new challenges and vulnerabilities in terms of security and privacy. This is a critical

challenge to both service providers and users, considering the numbers of users growing

dramatically every day, because inappropriate usage of OSNs may cause privacy damages or

security violations. The security and privacy issues in OSNs become major concerns that

hinder the widespread adoption of OSN services – especially in sensitive organizations.

In general, survivability in a mission-critical system can be achieved by a three-pronged

strategy: Prevention, Detection/Response, and Recovery [28]. According to this strategy, we

must first of all attempt to prevent possible vulnerabilities and attacks from compromising

mission-critical systems and resources. Undertaking this approach, we enhance the level of

prevention in the highest-growing communication medium - OSN services. Ultimately, our

trust mechanisms will make the current OSNs more survivable so that even sensitive

organizations can rely on the services and increase their productivity and profit via reliable

resource sharing with heterogeneous platforms, security, high availability, and cost-effective

maintenance.

Although users are constantly warned about the security and privacy threats involved with

the use of OSN sites, yet many ordinary users are unaware of the risks through the service.

Furthermore, the third party applications, which are integrated with an OSN, may trigger

security vulnerabilities or weaknesses to the entire OSN service.

Approved for Public Release; Distribution Unlimited.

26

Figure 6: States of Data Sharing on OSNs

Currently, however, there are no standard countermeasures governing the OSN providers

with regard to security, privacy, or reliability. As a result, each provider has full discretion

over how they will manage these important issues, but they do not have strong technical

solutions for those concerns. Due to the lack of reliable trust mechanisms in the current OSN

services, sensitive organizations such as government agencies and DoD have not adopted the

services in their environments yet, while there are various advantages demonstrated in other

communities.

Therefore, in order to provide the same benefits of OSN services to we have analyzed the

security and privacy vulnerabilities in OSN services and developed the support mechanisms

for trusted OSN services, so that more users and sensitive organizations may adopt the

trusted OSN services in their computing environments. The outcomes of this research should

serve as a foundation for further research that will uncover solutions to trusted OSNs and

lead to increased usage of the OSN services with its advantages. We believe the trusted

OSNs will promote information superiority at sensitive organizations including IA

community by providing effective trust mechanisms to a collection of universal information

services that can be rapidly tailored and dynamically orchestrated to accommodate a variety

of enterprise needs.

In particular, we have developed a framework that can provide trusted data management in

Approved for Public Release; Distribution Unlimited.

27

OSN services [29-32]. In summary, we first identified the data types on OSNs and the states

of shared data, considering the desired and actual levels of data sharing, with respect to

Optimal, Under-shared, Over-shared, and Hybrid (depicted in Figure 6). We then defined and

analyzed the parameters that facilitate or detract from the level of data sharing on OSNs.

Furthermore, we investigated the preventive parameters that help OSN users and service

providers properly maintain sensitive information on OSNs, reducing the possibility of state

transition to non-Optimal states.

In a reliable OSN service, users should be able to set up the desired levels of information

sharing with specific groups of other users. However, it is not clear to an ordinary user how

to decide how much information should be revealed to others. Therefore, in this research we

proposed an approach for helping an OSN user determine his optimum level of information

sharing, taking into consideration the payoffs (potential Reward or Cost) based on the

Markov Decision Process (MDP).

The MDP-based approach can be considered as a one-player game, where the user is viewed

as playing the game against impersonal background situation. As an extension of the MDP-

based approach, we also introduced a game theoretic approach for helping OSN users to

determine their optimum policy on OSNs in terms of data sharing, based on a two-player

(i.e., user and attacker) zero-sum Markov game model [31]. This is a generalized framework

of the MDP-based approach that considers the interactions of typical players in OSN services

with conflicting interests whose decisions affect each other’s. After developing the game-

theoretical model, we conducted various attack simulations and discussed the results,

considering random attackers without knowledge about the target, attackers with limited

knowledge about the target, attackers with full knowledge about the target, and the risks of

rapid public exposure [32].

Our research addresses the security and privacy problems in existing OSNs that have

hindered the broader application of large-scale resource-sharing services in a sensitive

organization. Our research outcomes offer an array of advanced approach for data-sharing in

large-scale online computing services, developing new support mechanisms. We expect that

Approved for Public Release; Distribution Unlimited.

28

the trusted OSN services will enable the users to protect their security and privacy on the

Internet and organizations to increase their productivity and profit via reliable resource

sharing with heterogeneous platforms, security, high availability, and cost-effective

maintenance.

From investigating OSNs we gained exposure to a technology that is a microcosm of the

Internet and mobile media. We likewise devoted some of our attention to two other

technologies that constitute the cyber infrastructure: wireless sensor networks and cognitive

radio networks. Delving into the cognitive the radio paradigm is a meaningful arena for

FTFT because cognitive radios pose challenges that are pervasive across cyberspace.

Cognitive radios, due to their openness, make them both an enabler and a danger. Wireless

sensor networks are also relevant to FTFT because they, like fault-tolerant computers, are

often deployed in hostile environments where they have to contend with resource-limiting

circumstances. In turning our attention to wireless sensor networks and cognitive radios we

sought to introduce performance improvements to their role in cyberspace instead of

elevating their assurance. Usually replication and diversity, as we have presented them for

fault tolerance for fight through, are introduced after a component’s functionally is

implemented. While not explicitly showing how, we contend that our proposed designs

OSNs, wireless sensor networks and cognitive radios will, if adopted, facilitate the use of

replication and diversity for fighting-through.

3.8 Dynamic Reconfigurable Routing for Wireless Sensor Networks

The primary purpose of any infrastructure-less wireless sensor networks (WSNs) is to sense

the environment and while doing so, they can deliver a multitude of services, ranging from

reliable sensing, real time streams, mission critical support, network reprogramming and so

on. The very nature of these networks calls for multi-hop wireless routing where all sensor

nodes somehow decide on how, when, and whom to route the packets. Obviously, no one

routing mechanism would suffice for the variety of tasks a sensor network performs—

sending periodic sense-and disseminate flows, real time streams, mission critical alerts,

Approved for Public Release; Distribution Unlimited.

29

network reprogramming data, patched updates, interactive queries, commands and so on. In

this regard, we have developed a dynamic reconfigurable routing framework for wireless

sensor networks [33].

The main idea behind the dynamic reconfigurable routing framework is the exposition of the

flow’s requirement using just 3 bits in the packet header. The 3 bits in the header represent

i) whether the packet is a control packet or a data packet, ii) if the packet is delay sensitive,

and iii) if the packet needs reliability. The inferences due to the 8 possible combinations of

these bits are shown in the Table 2.

Table 2: Combination of Preamble Bits and Their Inferences

Data (0)
Control (1)

Real-time (1)/
Non-real-time (0)

Reliable (1)/
Unreliable (0)

Inference

0 0 0 Unreliable, non real time, data packet

0 0 1 Reliable, non real time, data packet

0 1 0 Time critical, unreliable, data packet

0 1 1 Mission critical data packet

1 0 0 Unreliable, non real time, control packet

1 0 1 Reliable, non real time, control packet

1 1 0 Real time, unreliable, control packet

1 1 1 Mission critical control packet

The proposed dynamic routing framework (shown in Figure 7 as also seen in [33]) consists

of a collection of routing components that optimize the routing for a given class of traffic.

The suffix of the control packets (C0–C3) and data packets (D0–D3) indicates the status of

the reliability and real time bits. For example, packet D3 would have preamble bits set to [0,

1, 1], with the first bit indicating a data packet and last 2 bits account for the suffix 3. Two

virtual queues, one each for data and control traffic, take the incoming packets and schedule

them for transmission to the lower layers of the stack. The shared neighbor table houses

values such as the node-ID, energy available, congestion level, depth, link quality estimate

and a ‘last heard’ bit. Since routing components share this table, it decouples core protocol

features from interface assumptions and regularizes data structure requirements. This leaves

the routing layer with a composable set of routing components that can be seamlessly ported

across various research efforts.

Approved for Public Release; Distribution Unlimited.

30

Figure 7: Dynamic Routing Framework

The evaluation of the framework was done via both simulations and testbed implementations.

Predictive maintenance (PdM) was chosen as the target application to test the framework.

PdM’s variety of requirements of periodic reports, streaming real time values, query

response, continuous customization, network reprogramming, and mission critical alerts were

mapped to the 3 bit patterns. Realistic traffic scenario was generated for the PdM application.

The routing framework was also implemented on a 40 node MicaZ wireless testbed with the

nodes arranged in a rectangular 8 X 5 grid. Results revealed the differential routing capability

of the proposed routing framework.

Approved for Public Release; Distribution Unlimited.

31

3.9 Bargaining for Radio Spectrum Sharing

With the Presidential Memorandum on Unleashing the Wireless Broadband Revolution [34],

there has been a lot of recent activity on how to cater to the demands of wireless services in

the years to come. Though some of the demands can be met with incremental technological

advancements, a serious imbalance in the supply and demand still looms. This calls for a

clean-slate design not only on the radio engineering solutions but also on how the market

must evolve so that the resources are more efficiently utilized for better service offerings

with competitive pricing. The most vital resource for any wireless application or service (i.e.,

mobile telephony, TV and radio broadcasts, GPS, maritime navigation) is the radio spectrum.

Thus, it becomes absolutely essential that the available radio spectrum is utilized in the best

possible manner.

Spectrum allocation and management have traditionally followed a ‘command and control’

approach – regulators like the Federal Communications Commission (FCC) allocate

spectrum to specific services under restrictive licenses. These limitations have motivated a

paradigm shift from static spectrum allocation towards a more ‘liberalized’ notion of

dynamic spectrum management in which secondary networks/users (non-license holders) can

`borrow’ and `share’ idle spectrum from those who hold licensees (i.e., primary

networks/users), without causing harmful interference to the latter – a notion commonly

referred to as the dynamic spectrum access (DSA). The most hotly debated question is:

“how should spectrum be allocated and managed” by the authorities? The general consensus

is to allow multiple secondary networks to compete and co-exist for better utilization of radio

resources.

In this regard, we have developed a bargaining framework that takes into consideration the

interference from other networks such that all networks can co-exist. A preliminary version

of this work was presented in IEEE WCNC 2012 in Paris, France [35]. The complete work is

currently under review in the IEEE/ACM Transactions on Networking [36].

Our main contribution lies in proposition of a bargaining framework for radio spectrum

Approved for Public Release; Distribution Unlimited.

32

sharing. We consider nodes to behave in a selfish manner, i.e., each node solely focuses on

maximizing its utility by accessing and using as many channels as possible from the set of

orthogonal channels not currently being used by any of the primary incumbents. The nodes in

our model, for example, can correspond to broadcast access points deployed by competing

wireless service providers. By using more channels each provider may intend to support

more customers for maximizing its revenue. The channels that a node selects is, however,

subject to the following constraint– nodes within the interference range of each other have to

use orthogonal channels to minimize interference. Thus, the nodes will have to agree upon a

sharing rule of the channels among themselves, i.e., each node will have to decide “how

many” and “which” channels to use. In other words, the channel access problem by a set of

selfish nodes is inherently a bargaining game. The fundamental question that we address is–

how many and which channels each node should access to maximize its gain. Specifically, we

model the problem of agreeing upon a sharing rule of the channels among the nodes as an

infinite horizon Rubinstein-Stahl bargaining game. In our model, each node “bargains” with

the other nodes (opponents) in the network regarding its “share” (how many and which) of

the channels. Notice that, until the nodes agree upon the sharing rule, none of nodes can start

data communication. Thus, “waiting” for the bargaining outcome also costs the nodes. We

consider this cost by discounting future payoff of the nodes. This discounting represents the

patience of the nodes in waiting for the bargaining outcome. We argue that it is the relative

patience of the players that influence the degree of fairness in the sharing rule. We show

more patient players tend to get a larger fraction of available channels.

We solve the bargaining game by deriving Subgame Perfect Nash Equilibrium (SPNE)

strategies of the players in the game. The SPNE strategies that we derive comprise a set of

strategies such that, no player in a subgame can deviate from these strategies and thereby

gain from his deviation. We investigate finite horizon version of the game and identify its

SPNE strategies. We then extend these results to the infinite horizon bargaining game. We

provide polynomial time algorithms to find the SPNE strategies of both the finite and infinite

horizon versions of the game. Furthermore, we identify Pareto optimal equilibria of the game

for improving spectrum utilization. We also conduct simulations to study how the self-gain

maximizing strategies of the players affect system wide performance.

Approved for Public Release; Distribution Unlimited.

33

The proposed solution concept can be best described using an illustrative example with 6

nodes as shown in Figure 8. The graphs in the figure depict the conflict graph of the

network. The number of channels available, M, has been assumed to be 5. Each node has a

discount factor of 0.5. The game is played for 6 periods. The channels assigned to the nodes

in each period have been shown in brackets beside the node.

Our objective is to find the SPNE strategy of P1 in the first period of the game. Figure 8(a)

shows the Pareto optimal NE strategy of P6 in the last period of the game. The offerer in this

period is P6. First, a NE strategy of P6 in the last stage (which need not be Pareto optimal) is

found. P6 colors his neighbors (P2 and P3) with the least possible number of colors

(channels) and keeps rest of the channels for himself (thereby maximizing his share). The

neighboring nodes (i.e., P1, P4 and P5) are given a channel each by graph coloring them.

This is done by considering P1, P4 and P5 in non-increasing order of their degree in the

subgraph induced by P1, P2, P3, P4 and P5. Thus, P1 is considered first and gets C2, next

P5 gets C3 and finally P4 gets channel C1. Clearly, the channel assignment obtained so far

corresponds to a NE strategy of P1 in the last stage, but one that may not be Pareto optimal,

since the shares of some players (P1, P4 and P5) can be improved without hurting the share

of any other player.

Approved for Public Release; Distribution Unlimited.

34

Figure 8: Pareto Optimal SPNE of the Respective Offerer in Different Periods

The Pareto optimal NE strategy of P6 is obtained by considering the players in P-6 and

checking to see if more channels can be assigned to the player. In the first iteration, P1

receives C4, P2 and P3 does not get any more channels, P4 gets C3 and P5 gets C5. In the

second iteration only P4 gets C5. The channel assignment obtained now is shown in Figure

8(a), and corresponds to the Pareto optimal NE strategy of P6 in the last stage of the game.

Following the same line of reasoning, we finally obtain the SPNE strategy of P1 in the first

period of the game. This strategy of P1 is shown in Figure 8(f).

Approved for Public Release; Distribution Unlimited.

35

The proposed spectrum bargaining is fundamentally different and much more difficult than

conventional Rubinstein-Stahl bargaining. This is because of two primary reasons– (i)

spectrum can be spatially reused concurrently; two conflicting players must not use the same

channels simultaneously yet well-separated players can, and, (ii) players can only use whole

channels, not fractional channels. We consider both constraints while analyzing the spectrum

bargaining game.

4.0 Results and Discussion

Fault tolerance is an important component of cyber defense. In fact, fault tolerance deals

with detection and treatment of failures and cyber defense deals with detection and treatment

of violations. A well-formed and well-founded framework for treating violations comes from

fault-tolerant computing. Traditionally, fault-tolerant computing dealt with randomly

occurring faults and not faults resulting from intelligent attack. However, a reliable system

should be survivable against the faults caused by cyber attacks as well as the internal failures.

Whereas faults caused by natural-occurring phenomena are tolerable using established,

standard approaches, attacker-induced faults require a more aggressive approach.

 The results from the individual tasks described above demonstrate the aggressiveness needed

to transform fault tolerance to a fight through capability. Nonetheless, new challenges arise

in the area of transforming fault tolerance to attack tolerance. We have witnessed some of

these challenges in our investigations into OSNs. Our choosing of OSNs for an area of

investigation was motivated by how OSNs are changing the world as part of cloud

computing.

Cloud computing has attracted users seeking the cloud’s ubiquity, convenience, and on-

demand network accessibility. Although promoting availability, the cloud’s perceived

vulnerabilities have spurred researchers to find ways to assure availability in the cloud [37-

39]. Unavailability is not the only possible detriment to adopting the cloud computing

model; integrity violations also became the concern of researchers [40], [41]. Of particular

Approved for Public Release; Distribution Unlimited.

36

interest to us is the proposed use of concepts from the domain of fault-tolerant computing to

address availability and integrity in cloud computing. The deliberate introduction of

redundancy in the cloud’s provisioning [42] underscores the suitability of cloud computing as

a target for fault tolerance concepts. Unlike random, naturally-occurring faults, the

aggressiveness with which attackers induce faults has motivated researchers to propose

schemes that make fault tolerance more robust.

Although none of these issues is new in the world of computing, compared with traditional

infrastructures, cloud computing architectures exhibit a different partitioning with respect to

security and survivability issues [43-46].

The cloud’s attributes of ubiquity, convenience, and on-demand network accessibility served

as a springboard for us to examine some of the cloud’s outermost reaches: wireless sensor

networks and cognitive radios. The two technologies, while not part of the cloud computing

concept, are tied to the movement of data to and from the cloud; therefore they become key

ingredients to the cyberinfrastructure and hence were deserving of our attention.

Researchers [47], [48] have expanded upon traditional fault tolerance to make it robust

enough to withstand attack. Using calculations of the mean-time-to-compromise [3], [4],

these schemes employ sufficient amounts of resource redundancy in the framework of a

general distributed system to withstand aggressively-created faults. They do not, however,

achieve a comprehensive path to survivability that, in addition to tolerating, will avoid,

prevent, and recover from faults. As a result, these schemes limit themselves by not fully

exploiting the fault fighting features that could be realized in cloud computing. We contend

that the approaches adopted by FTFT to transform fault tolerance to a fight through

capability are amendable to address some of the main security challenges faced by cloud

computing.

Finally, although the results from our investigations into wireless sensor networks and

cognitive radios did not deal with fault tolerance per se, they nonetheless contributed to the

closely-related issue of dealing with resource constraints. The approaches that we proposed

Approved for Public Release; Distribution Unlimited.

37

in wireless sensor networks and cognitive radios are proactive whereas traditional fault

tolerance is, for the most part, reactive. In a larger sense, our transforming fault-tolerant

computing concepts into a fight through capability, is a blending of the reactive and the

proactive: our proposed fight through OODA Loop is reactive to faults yet strives to

proactively anticipate the attacker’s optimal next action. Conceptually, this results in

concentric OODA Loops as depicted in Figure 9. The outer loop is the attacker’s OODA

Loop and the inner loop belongs to the defender. The tighter diameter of the defender’s

OODA Loop illustrates the defender’s more timely completion of the cycle. FTFT’s multi-

dimensional redundancy permits the defender to “get inside the enemy’s decision cycle.”

Figure 9: Concentric OODA Loops: Attacker’s Outer Loop, Defender’s Inner Loop

5.0 Conclusions

FTFT offers discriminators from previous endeavors to apply fault tolerance for cyber defense.

By simultaneously combining spatial, temporal and information redundancy we form a triad that

establishes an OODA loop for fight-through. Recall that MTTB and MTTC are coarse-grain

measures applied at network design time for configuring firewalls, hardening servers, and

Approved for Public Release; Distribution Unlimited.

38

placing intrusion sensors in anticipation of attacks. We proactively and propitiously adapt to

undermine the attacker’s knowledge of our fault-tolerant system. Our adaption of fault tolerance

techniques is multi-dimensional: an attacker inflicting punishment upon the fault tolerance

mechanisms of one dimension will not defeat the entire fight-through capability; instead, the

other dimensions become the reinforcements for fighting through. To defeat the triad, the attack

must succeed against all the dimensions simultaneously.

We demonstrated how to stand-up multidimensional redundancy to increase the attacker’s target

space. In so doing, we force the attacker to attempt overtaking every dimension of redundancy

simultaneously. This can be decisive: it permits the continual defeat of an adversary’s optimal

strategies.

Approved for Public Release; Distribution Unlimited.

39

6.0 References

1. Frans P.B. Osinga, Science, Strategy and War: The Strategic Theory of John Boyd,
Routledge Publishing, 2006.

2. OASIS: Foundations of Intrusion Tolerant Systems, Jaynarayan H. Lala editor, IEEE
Computer Society Press, 2003.

3. http://www.spacedaily.com/news/cyberwar-04g.html

4. David Leversage and Eric Byres, “Estimating a System’s Mean Time-to-Compromise,”
Journal of Security and Privacy, Vol. 6, Issue1, IEEE, 2008.

5. Erland Jonsson and Tomas Olovsson, “A Quantitative Model of the Security Intrusion
Process Based on Attacker Behavior,” IEEE Transactions of Software Engineering, Vol. 23,
No. 4, 1997.

6. Barry Johnson, Design and Analysis for Fault-Tolerant Digital Systems, Addison-Wesley
Publishers, 1989.

7. Kevin Kwiat, Alan Taylor, William Zwicker, Daniel Hill, Sean Wetzonis, and Shangping
Ren, "Analysis of Binary Voting Algorithms for use in Fault-Tolerant and Secure
Computing," IEEE Proceedings of the International Conference on Computer Engineering

and Systems (ICCES), Cairo, Egypt, December 2010, pp. 269-273.

8. Roger Myerson, Game Theory: Analysis of Conflict, Harvard University Press, 1997.

9. Li Wang, Zheng Li, Shangping Ren, and Kevin Kwiat, “Optimal Voting Strategy Against
Rational Attackers,” Proceedings of the International Conference on Risk and Security of

Internet and Systems (CRISIS), 2011, pp. 1–8.

10. Li Wang, Shangping Ren, Ke Yue, and Kevin Kwiat, “Optimal Resource Allocation for
Protecting System Availability Against Random Cyber Attacks,” Proceedings of the

International Conference on Computer Research and Development (ICCRD), 2011 , vol. 1,

Approved for Public Release; Distribution Unlimited.

40

pp. 477–482.

11. Li Wang, Yair Leiferman, Shangping Ren, and Kevin Kwiat, and Xiaowei Li,
“Improving Complex Distributed Software System Availability Through Information
Hiding,” Proceedings of the 2010 ACM Symposium on Applied Computing, 2010, pp. 452–
456.

12. Mohammad Rabby, Kaliappa Ravindran, and Kevin Kwiat, “Hierarchical Adaptive QoS
Control for Voting-based Data Collection in Hostile Environments,” Proceedings of the 8

th

International Conference on Network and Service Management (CNSM), 2012, pp. 194-198.

13. Eldon C. Hall, Journey to the Moon: The History of the Apollo Guidance Computer,
American Institute of Aeronautics & Astronautics, 1996.

14. Edgar Ulsamer, “Computers – Key to Tomorrow’s Air Force,” Air Force Magazine, July
1973, pp. 46-52.

15. Peter A.Lee and Thomas Anderson, Fault Tolerance: Principles and Practice, Second
Revised Edition, Springer-Verlag, 1990.

16. Brian Randell, “System Structure for Software Fault Tolerance,” IEEE Transactions on

Software Engineering, Vol. SE-1, No. 2, June 1975, pp. 220-232.

17. Algirdas Avizienis, “The N-Version Approach to Fault-Tolerant Systems,” IEEE

Transactions on Software Engineering, Vol. SE-11, No. 12, December 1985, pp. 1,491-
1,501.

18. Jean-Claude Laprie, Jean Alrat, Christian Be’ounes, and Karama Kanoun, “Definition and
Analysis of Hardware- and Software-Fault-Tolerant Architectures,” IEEE Computer, July
1990, pp. 39-51.

19. Alfred Spector, and David Gifford, “The Space Shuttle Primary Computer System,”
Communications of the ACM, Vol. 27, No. 9, September 1984, pp. 874-901.

20. Ken Birman, and Fred Schneider, “The Monoculture Risk Put Into Context,” IEEE

Approved for Public Release; Distribution Unlimited.

41

Security and Privacy, Vol. 7, No. 1, January/February 2009, pp. 14-17.

21. Russell J. Abbott, “Resourceful Systems for Fault Tolerance, Reliability, and Safety,”
ACM Computing Surveys, Vol. 22, Issue 1, March 1990, pp. 35-68.

22. Vincent Rahli, Nicolas Schiper, Robbert van Renesse, Mark Bickford, Robert L.
Constable, “A Diversified and Correct-by-Construction Broadcast Service,” Proceedings of

the 2
nd

 International Workshop on Rigorous Protocol Engineering (WRiPE), October 2012,
pp. 1-6.

23. Charles Kamhoua, Kevin Kwiat, Joon Park "Surviving in Cyberspace: A Game Theoretic
Approach" in the Journal of Communications, Special Issue on Future Directions in

Computing and Networking, Academy Publisher, Vol. 7, No 6, June 2012.

24. Ellison, G. “Cooperation in the Prisoner's Dilemma with Anonymous Random Matching”
The Review of Economic Studies, Vol. 61. No. 3, July, 1994, pp. 567-588.

25. Charles Kamhoua, Patrick Hurley, Kevin Kwiat, Joon Park "Resilient Voting
Mechanisms for Mission Survivability in Cyberspace: Combining Replication and Diversity"
in the International Journal of Network Security and Its Applications (IJNSA), Vol.4, No.4,
July 2012, pp. 1-19.

26. Charles Kamhoua, Kevin Kwiat, Joon Park "A Binary Vote Based Comparison of Simple
Majority and Hierarchical Decision for Survivable Networks" in the Proceedings of the Third

International Conference in Communication Security and Information Assurance (CSIA

2012), Published by Springer, Delhi, India, May 2012, pp. 883-896.

27. “Inverting the Information Pyramid,” Federal Computer Week, Vol. 26, No.4, March 30,
2012. Available online at: http://www.defensesystems.com/C4ISRreport

28. Joon S. Park, Pratheep Chandramohan, Avinash T. Suresh, Joseph Giordano, and Kevin
Kwiat. “Component Survivability for Mission-Critical Distributed Systems,” Special Issue
on Cloud and Pervasive Computing, Journal of Supercomputing, 2012. In press (online
version is available at http://www.springerlink.com/content/510226706112j753/)

29. Joon S. Park, Sookyung Kim; Charles Kamhoua, and Kevin Kwiat, "Towards Trusted

http://www.defensesystems.com/C4ISRreport

Approved for Public Release; Distribution Unlimited.

42

Data Management in Online Social Network (OSN) Services," World Congress on Internet

Security (WorldCIS), June 10-12, 2012., pp.202-203.

30. Joon Park, Sookyung Kim, Charles Kamhoua, and Kevin Kwiat, "Optimal State
Management of Data Sharing in Online Social Network (OSN) Services," IEEE 11th

International Conference on Trust, Security and Privacy in Computing and Communications

(TrustCom), June 25-27, 2012, pp. 648-655.

31. Charles Kamhoua, Kevin Kwiat, Joon S. Park, “A Game Theoretic Approach for
Modeling Optimal Data Sharing on Online Social Networks,” 9th International Conference

on Electrical Engineering, Computing Science and Automatic Control (CCE), September 26-
28, 2012, pp. 271-276.

32. Jonathan White, Joon S. Park, Charles Kamhoua, Kevin Kwiat, "Game Theoretic Attack
Simulation in Online Social Network (OSN) Services," IEEE Intelligence and Security

Informatics (ISI), June 4-7, 2013. In progress.

33. Mukand Venkataraman, Mainak Chatterjee and Kevin Kwiat, “A Dynamic
Reconfigurable Routing Framework for Wireless Sensor Networks,” Elsevier Journal on Ad

hoc Networks, Vol. 9, Issue 7, Sept. 2011, pp. 1270-1286.

34. http://www.whitehouse.gov/the-press-office/presidential-memorandum-unleashing-
wireless-broadband-revolution

35. Swastik Brahma and Mainak Chatterjee, ``Spectrum Sharing in Secondary Networks: A
Bargain Theoretic approach”, IEEE Wireless Communications and Networking Conference
(WCNC), 2012, pp. 1331-1336.

36. Swastik Brahma, Mainak Chatterjee, Kevin Kwiat, ``Interference Aware Bargaining
Framework for Self-Coexistence in Unlicensed Spectrum”, Under review in IEEE/ACM

Transactions on Networking, 2012.

37. Juan Du, Xiaohui Gu, Douglas Reeves, "Highly Available Component Sharing in Large-
Scale Multi-Tenant Cloud Systems," Proceedings of the 19th ACM International Symposium

on High Performance Distributed Computing (HPDC), June 2010, pp. 85-94.

Approved for Public Release; Distribution Unlimited.

43

38. Bernardetta Addis, Danilo Ardagna and Barbara Panicucci, and Li Zhang, "Autonomic
Management of Cloud Service Centers with Availability Guarantees," Proceedings IEEE 3rd

International Conference on Cloud Computing (CLOUD), July, 2010, pp. 220-227.

39. Song Fu, "Failure-Aware Resource Management for High-Availability Computing
Clusters with Distributed Virtual Machines," Journal of Parallel and Distributed Computing
Vol. 70, No. 4, April, 2010, pp. 384-393.

40. Juan Du, Wei Wei, Xiaohui Gu, Ting Yu, "RunTest: Assuring Integrity of Dataflow
Processing in Cloud Computing Infrastructures," Proceedings of the 5th ACM Symposium on

Information, Computer and Communications Security (ASIACC), 2010, pp. 293-304.

41. Juan Du, Nidhi Shah, Xiaohui Gu, "Adaptive Data-Driven Service Integrity Attestation
for Multi-Tenant Cloud Systems," Proceeding of the IEEE 19th International Workshop on

Quality of Service (IWQoS), June, 2011, pp. 1-9.

42. Sebastian Stein, Terry R. Payne, and Nicholas R. Jennings, "Robust Execution of Service
Workflows Using Redundancy and Advance Reservations," IEEE Transactions on Services

Computing, Vol. 4, No. 2, 2011, pp. 125-139.

43. Joon S. Park and Jerry Robinson, “Security Mechanisms for Trusted Cloud Computing,”
Proceedings of the International Conference on Cloud Computing & Virtualization (CCV),
Singapore, May, 2010.

44. Bernd Grobauer, Tobias Walloschek, and Elmar Stocker, “Understanding Cloud
Computing Vulnerabilities,” IEEE Security and Privacy Vol. 9, No. 2, March 2011, pp. 50-
57.

45. Hassan Takabi, James B. D. Joshi, and Gail-Joon Ahn, “Security and Privacy Challenges
in Cloud Computing Environments,” IEEE Security and Privacy Vol. 8, No. 6 November,
2010, pp. 24-31.

46. Siani Pearson and Azzedine Benameur, “Privacy, Security and Trust Issues Arising from
Cloud Computing,” Proceedings of the IEEE International Conference on Cloud Computing

Technology and Science (CLOUDCOM '10), November, 2010, pp. 693 - 702.

Approved for Public Release; Distribution Unlimited.

44

47. Kjell Hausken, “Strategic Defense and Attack for Series and Parallel Reliability
Systems,” European Journal of Operational Research, Vol. 186, No. 2, April 2008, pp. 856–
881.

48. Gregory Levitin and Kjell Hausken, “False Targets vs. Redundancy in Homogeneous
Parallel Systems,” Reliability Engineering & System Safety, Vol. 94, No. 2, 2009, pp. 588–
595.

